
SCHEMATIC DIAGRAM FOR INSERTION PROBE ASSEMBLY

Exclusive Authorized Distributor, Stockist & Service Provider of Manas Microsystem

Regd. Office: 704, T-7, Panchsheel Works: 151, Vishnu Enclave, Opp. Primrose, Opp. Govindpuram, Govindpuram, Hapur Road, Ghaziabad Ghaziabad (U.P)-201013, INDIA (U.P)-201013, INDIA

sales.fortunexis@gmail.com | sales@fortunexis.in 91 80767 51198 | +91 85959 51883

WE MEASURE WIDE AQUA FLOW

Exclusive Authorized Distributor, Stockist & Service Provider of

EMF-3 _ Fc-INE-02_1 www.fortunexis.in

INSERTION MAGMETER SROAT 1000i

We are certified with ISO/IEC 17025:2017 | ISO 9001:2015 ISO 14001:2015 | OHSAS 45001:2018

MAGNETIC FLOW METER SROAT 1000*i*

INTRODUCTION

The Manas make Insertion Type Electromagnetic flow meter, called SROAT - 1000*i* is an ideal solution for water flow measurement in large diameter pipes. Fairly good accuracy of measurement(typically \pm 1% of flow rate) can be achieved with little care in installation of probe and transmitter. The electrical conductivity of liquid under measurement can be as low as 20

FORTUNEXIS

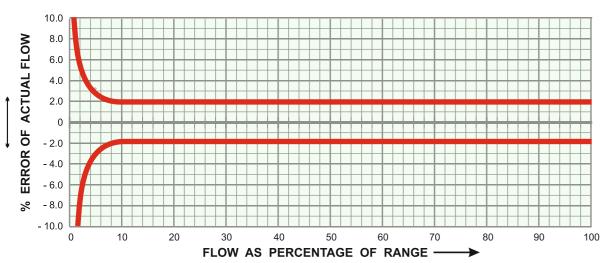
microsiemens / cm. Being insertion type, there is virtually no pressure loss. Most economical as compared to its counterpart in full bore measurement or ultrasonic measurement.

The technique called as "Pulsed DC" is used which offers very high zero stability and accuracy of measurement. The standard current output of 4-20 mA DC is provided which is linearly proportional to volumetric flow rate.

PRINCIPLE OF OPERATION

The method of flow measurement is based on Faraday's law of electromagnetic induction. When a conductor moves within a magnetic field, voltage is induced in it which is proportional to the velocity of conductor.

In this case the conductor is flowing media. The equation is as below.


E = B.v.d.

where,

- E = Induced voltage (proportional to velocity)
- B = Pulsed magnetic flux density.
- v = Mean velocity of the media
- d = Distance between the sensing electrodes

For a given probe and compatible amplifier the flux density 'B' is constant, the distance between the electrodes is constant. Hence, the induced voltage is proportional to the velocity of the flowing media. Thus, the unit can be calibrated in terms of volumetric flow rate by knowing the cross-sectional area of the pipe on which the probe is installed.

ERROR DIAGRAM

APPLICATIONS

Following industries find application of this flow measurement technique •Water Supply •Public Services and Utilities •Effluent Treatment Plants •Pharmaceutical Industries •Sugar Industries and Distilleries •Food and Drugs

PRINCIPAL ADVANTAGES

•Excellent long term stability using pulsed dc magnetization and auto zero technique.

•Measurement results are independent of density, viscosity, pressure, temperature, solid-impurities and conductivity variations (above $5 \,\mu$ S/cm)

•No additional pressure drop across the meter

•Compatible with virtually all corrosive / non-corrosive liquids.

 $\bullet \mbox{IP-68}$ class of protection offered, for sensor and IP-67 for transmitter

INSERTION PROBE: SROAT 1000i

Applicable line Sizes		: DN 200 to DN 2000	
Media Pressure		: 10 kg/cm max.	
Media Temperature		: 0 - 60°C	
Ambient Temperature Range		: 0 - 50°C	
Materials : Insertion Probe		: SS 304	
	Electrodes	: SS 316	
	Wetted Parts	: SS 304, SS 316, Epoxy	
	Weld in socket	: SS 304	
304	Flange Mounting Assembly (Refer Sk		
Power Supply To Field Coils		: Pulsed DC	

Terminal box : IP-68

For line sizes above DN 1200 contact to Factory.

E TABLE	(Flow rate at	: v = 1 m/s)
M3/Hr.	MLD	Cu.ft./Sec.
113.097	2.7143	1.1094
176.714	4.2411	1.7335
254.469	6.1072	2.4962
346.360	8.3126	3.3977
452.389	10.8573	4.4378
706.858	16.9646	6.9340
1017.875	24.4290	9.9850
1385.441	33.2506	13.5907
1809.556	43.4293	17.7511
2290.219	54.9652	22.4662
2827.431	67.8583	27.7360
471.500	97.7160	39.9400
5541.765	133.0024	54.3626
7238.223	173.7174	71.0043
9160.876	219.8610	89.8648
11309.724	271.4333	110.9442
	M3/Hr. 113.097 176.714 254.469 346.360 452.389 706.858 1017.875 1385.441 1809.556 2290.219 2827.431 471.500 5541.765 7238.223 9160.876	M3/Hr. MLD 113.097 2.7143 176.714 4.2411 254.469 6.1072 346.360 8.3126 452.389 10.8573 706.858 16.9646 1017.875 24.4290 1385.441 33.2506 1809.556 43.4293 2290.219 54.9652 2827.431 67.8583 471.500 97.7160 5541.765 133.0024 7238.223 173.7174 9160.876 219.8610

COMPARISON OF VARIOUS TYPES OF FLOW METERS

PARAMETER	INSERTION SROAT 1000i	VORTEX INSERTION	TURBINE	ORIFICE
Accuracy	±2 %	±2 %	±3 %	±5 %
Min.Vel.	0.1 m/s	0.6 m/s	0.6 m/s	-
Pr. Drop	NIL	NIL	Considerable	Considerable
Effect of Viscosity and Density variations	No Effect	Very Much	Very Much	Very Much
Solid Particle Impurities	No Effect	Wears Out	Wears Out	Wears Out Errors In Measurements
Vibration of Pipe	Immune	Affects Reading	Affects Reading	Not Recommended
Orientation	No Effect	No Effect	Affects Accuracy	_

TRANSMITTER SROAT 1001A+

Туре	: Remote Mounted		
Min. Media Conductivity	: 5 µS/cm		
Signal Output	: 4-20 mA dc Isolated in		
	max. 600 ohms		
Coil Excitation Frequency	: 6.25 Hz		
Display	: 16 characters * 2 rows LCD display for instanious flow rate, totaliser, Engg. Units, fault messages etc.		
Flow Velocity Range	: 0.1 m/s to 2 m/s		
Accuracy	: ± 2 % Of Reading (for range between 100 % to 10 % of flow rate At Ref. Condition)		
Reference conditions	: Power supply nominal, Amb. Temp. 27 C±2 C		
Ambient Temperature	: 0 - 50°C		
Temperature Drift	: \pm 0.015% Per °C max		
Humidity	: 90% R. H. max. non condensing		
Material Of Housing	: Al. Die cast		
Power Supply*	: 230 V ac / 110 V ac / 24 Vdc ±10%		
Damping	: Adjustable from 5 to 30sec.		
Cable Entries	: PG 13.5 For Input PG 11 for rest		
Ingress Protection	: IP-67		

*Battery back-up can optionally be provided for measurement and totalisation of flow in case of power failure by providing a separate powering unit.